Decimal Floating Point Arithmetic IP Cores Family

Let the World Count Decimal
Agenda

• Why Decimal Arithmetic?
• State of Affairs
• SilMinds DFPA IP Cores Family
• Performance Sample
• Features
• SilMinds
Why Decimal Arithmetic?

- Numbers are all decimal. (IBM Report)
- Currency conversion regulations dictate that 6 correct decimal digits must be present.
- Loss of trailing zero if BFP is used ($2.4 \neq 2.40$)
- Loss of accuracy (endless fractions)

$5\% = 0.05 = 0.000011001100110011\ldots$
Why Decimal Arithmetic?

Interest Calculation

- A saving bank certificate of value 80.9 USD and the annual interest rate is 5%
- Correct certificate value after one year is 84.945
- Correct rounded value is 84.94 (Banker’s Rounding)
- Wrong Certificate value after one year (calculated on BFPU) = 84.94500000000001
- Wrong rounded value = 84.95 (Banker’s Rounding)
- Error is 1 cent per certificate.
- Bank will pay 1 more cent per certificate per year.
- Having millions of certificates may cause a big loss to the bank.
State of Affairs

- **Software decimal solutions**
 - Fixed scale integers
 - Error prone
 - Fixed precision
 - Not IEEE 754r compliant
 - Higher precision requires huge disk space for storage.
 - Complex algorithms (slow)
 - Present in Oracle, Microsoft SQL, MySQL..etc.
 - Floating point packages
 - C decNumber and Intel SW library
 - Extremely slow (2 to 3 orders of magnitude slower than hardware)
SilMinds DFPA IP Cores Family

• Add/Subtract Cores
 – DecAdd64
 • HSDecAdd64 (High Performance)
 • LCDecAdd64 (Low Cost)
 – DecAdd128
 • HSDecAdd128 (High Performance)
 • LCDecAdd64 (Low Cost)

• Multiply Cores
 – DecMult64
 • HSDecMult64 (High Performance)
 • LCDecMult64 (Low Cost)
 – DecMult128
 • HSDecMult128 (High Performance)
 • LCDecMult128 (Low Cost)
SilMinds DFPA IP Cores Family

- **Fused Multiply Add Cores**
 - DecFMA64
 - HSDecFMA64 (Q4-2008)
 - LCDecFMA64
 - DecFMA128
 - HSDecFMA128 (Q4-2008)
 - LCDecFMA128 (Q4-2008)

- **Division Cores**
 - DecDiv64
 - NRDecDiv64
 - DRDecDiv64 (Q4 – 2008)
 - DecDiv128 (Q4-2008)

- **Square Root Cores**
 - DecSqrt64
 - NRDecSqrt64
 - DRDecDiv64 (Q4-2008)
 - DecSqrt128 (Q4-2008)
Performance Sample

HSDecAdd64

SW Solutions are 2 to 3 orders of magnitude slower than hardware

1- HSDecAdd64 was originally synthesized in 0.18 um technology and the delay was mapped into 90 nm technology.
3- Technology Mapping was done using 90ps, 45ps FO4 inverter delays for 0.18um, 90 nm technology respectively.
2- The delay is post synthesis result.
3- No Place & Routing or overhead are taken into consideration
4- Software Testing was done on an Acer Aspire 5051 Laptop(AMD Turion, 2GHz, 2GB RAM, Ubuntu 8.04 OS)
5- The delay was originally computed in clock cycles and converted into time by multiplying it by 0.5 nS (2GHz Clock period, i.e. processor speed)
Performance Sample

HSDecAdd64

<table>
<thead>
<tr>
<th>Format</th>
<th>Hardware Design</th>
<th>Area</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>μm²</td>
<td>NAND2</td>
</tr>
<tr>
<td>Combinational</td>
<td></td>
<td>200648.3</td>
<td>20106</td>
</tr>
<tr>
<td>1 Stages</td>
<td></td>
<td>224801</td>
<td>22527</td>
</tr>
<tr>
<td>2 Stages</td>
<td></td>
<td>236387.3</td>
<td>23687</td>
</tr>
<tr>
<td>3 Stages</td>
<td></td>
<td>251346</td>
<td>25187</td>
</tr>
</tbody>
</table>

Delay Vs Pipelined Stages No.

- Combinational
- 1 Stage
- 2 Stage
- 3 Stage

N.B.
Original IP is synthesized in 0.18 μm technology while the graph results are scaled to 90 nm technology.
Features

• Full IEEE-754r compliance.
• Decimal64 (16 digits) and decimal128 (34 digits) formats support.
• Decimal Interchange format encoding with Densely Packed Decimal (DPD) coding support.
• Combinational or pipelined versions are available.
• 7 rounding modes support.
• Tested with over 200,000 test cases compliant with IEEE-754r format.
• Full accuracy and precision support.
• Fully synthesizable with no internal tri-states.
SilMinds

- Founded in 2007 as a silicon IP Design House
- Specialized in arithmetic hardware cores
- Provides Design services as well as IP cores
- High level of Know How (Stanford Ph.D., M.Sc’s)